Na+/H+ Exchangers Induce Autophagy in Neurons and Inhibit Polyglutamine-Induced Aggregate Formation

نویسندگان

  • Kazuya Togashi
  • Shuji Wakatsuki
  • Akiko Furuno
  • Shinji Tokunaga
  • Yoshitaka Nagai
  • Toshiyuki Araki
چکیده

In polyglutamine diseases, an abnormally elongated polyglutamine results in protein misfolding and accumulation of intracellular aggregates. Autophagy is a major cellular degradative pathway responsible for eliminating unnecessary proteins, including polyglutamine aggregates. Basal autophagy constitutively occurs at low levels in cells for the performance of homeostatic function, but the regulatory mechanism for basal autophagy remains elusive. Here we show that the Na(+)/H(+) exchanger (NHE) family of ion transporters affect autophagy in a neuron-like cell line (Neuro-2a cells). We showed that expression of NHE1 and NHE5 is correlated to polyglutamine accumulation levels in a cellular model of Huntington's disease, a fatal neurodegenerative disorder characterized by accumulation of polyglutamine-containing aggregate formation in the brain. Furthermore, we showed that loss of NHE5 results in increased polyglutamine accumulation in an animal model of Huntington's disease. Our data suggest that cellular pH regulation by NHE1 and NHE5 plays a role in regulating basal autophagy and thereby promotes autophagy-mediated degradation of proteins including polyglutamine aggregates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antioxidants can inhibit basal autophagy and enhance neurodegeneration in models of polyglutamine disease

Many neurodegenerative diseases exhibit protein accumulation and increased oxidative stress. Therapeutic strategies include clearing aggregate-prone proteins by enhancing autophagy or decreasing oxidative stress with antioxidants. Many autophagy-inducing stimuli increase reactive oxygen species (ROS), raising concerns that the benefits of autophagy up-regulation may be counterbalanced by ROS to...

متن کامل

Knockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells

Objective(s): Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis.  Materials and Methods: Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy a...

متن کامل

Rapamycin pre-treatment protects against apoptosis.

Macroautophagy (generally referred to as autophagy) mediates the bulk degradation of cytoplasmic contents, including proteins and organelles, in lysosomes. Rapamycin, a lipophilic, macrolide antibiotic, induces autophagy by inactivating the protein mammalian target of rapamycin (mTOR). We previously showed that rapamycin protects against mutant huntingtin-induced neurodegeneration in cell, fly ...

متن کامل

Intraneuronal aggregate formation and cell death after viral expression of expanded polyglutamine tracts in the adult rat brain.

Expanded polyglutamine (polyQ) tracts have been linked to a new class of human disease characterized by psychiatric/motor syndromes associated with specific patterns of neurodegeneration. We have used a direct viral approach to locally express expanded polyglutamine tracts fused to the green fluorescent protein (97Q-GFP) in the adult rat brain. We show that intrastriatal expression of 97Q-GFP c...

متن کامل

Autophagy and polyglutamine diseases

In polyglutamine diseases, an abnormally elongated polyglutamine tract results in protein misfolding and accumulation of intracellular aggregates. The length of the polyglutamine expansion correlates with the tendency of the mutant protein to aggregate, as well as with neuronal toxicity and earlier disease onset. Although currently there is no effective cure to prevent or slow down the progress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013